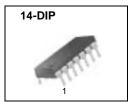
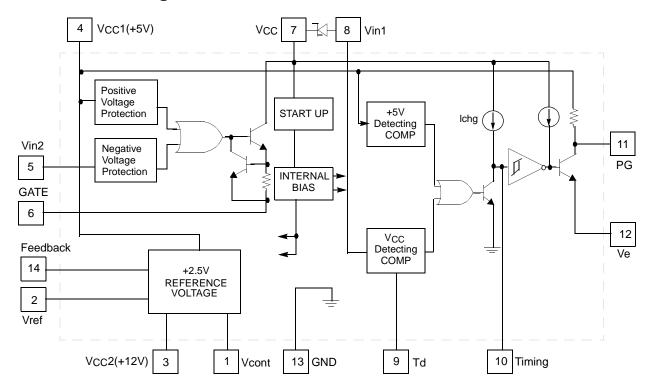


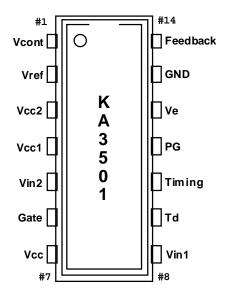
KA3501


PC SMPS Supervisory IC

Features


- · Complete House Keeping Circuit
- Few External Components
- Positive Voltage Protection
- Negative Voltage Protection
- High Current Drive Output for SCR
- Precision Voltage Reference for 5V/12V Outputs
- · Power Good Signal Generator with Hysteresis

Description


The KA3501 is complete housekeeping circuits for use in the secondary side of SMPS(Switched Mode Power Supply). This IC(Integrated Circuit) contains a precision voltage reference, protection circuits and a power good signal generator. It also has a high current drive output for use in conjunction with an external "crowbar" SCR. The reference voltage is trimmed to ±2% for correct output voltages(+5V/+12V) and power good signal generator is to monitor the voltage level of power good supply for safe operation in a microprocessor circuit. Using the KA3501 requires few external components to accomplish a complete housekeeping circuit for SMPS(Switched Mode Power Supply). The KA3501 is available in an 14-pin DIP.

Internal Block Diagram

Pin Assignments

Pin Number	Pin Name	Pin Function Description	
1	Vcont	Reference Voltage Control	
2	Vref	Precision Reference Voltage	
3	Vcc2	+12V Output Voltage	
4	Vcc1	+5V Output Voltage	
5	Vin2	UVP Input (Negative)	
6	Gate	Gate Drive Input for SCR	
7	Vcc	Supply Voltage	
8	Vin1	PG Input	
9	Td	Reference Voltage Delay for PG	
10	Timing	PG Delay	
11	PG	PG Output	
12	Ve	PG Ground (Open Emitter)	
13	GND	Ground	
14	Feedback	Feedback for Precision Reference	

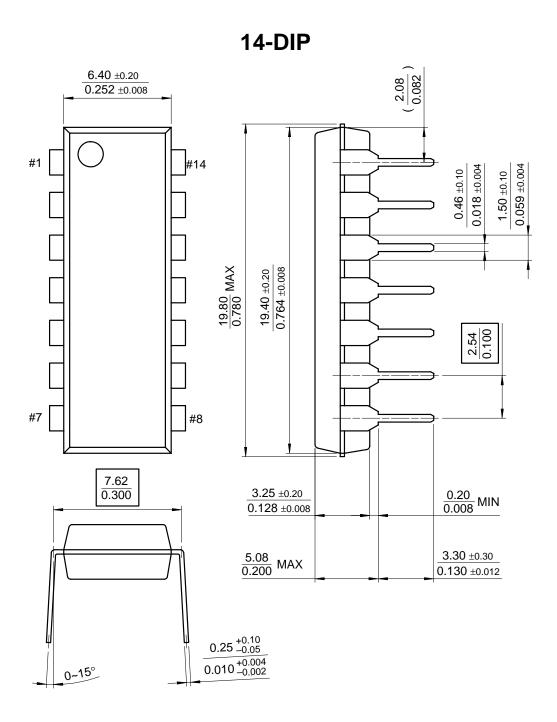
Absolute Maximum Rating (Ta = 25°C)

Parameter	Symbol	Value	Unit	
Supply Minimum Voltage	Vcc(min)	5	V	
Supply Maximum Voltage	Vcc(max)	35	V	
UV Input Voltage	Vuv	24	V	
Minimum Gate Drive Current	IDR	-25	V	
Operating Cathode Current	lκ	1 to 30	A	
Power Dissipation	Pd	1	W	
Operating Temperature Range	Topr	0 to 70	°C	

Electrical Characteristic

(Refer to the test circuit , Vcc=20V, Ta=25°C, unless otherwise stated)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Temperature Stability for VREF	ΔV_{REF}	-	-	17	-	mV	
PROTECTION SECTION							
Positive Protection Voltage	VPOSI	-	5.7	6.0	6.4	V	
Negative Protection Voltage	VNEGA	Vcc1 = 5V	-1.5	-2.5	-3.5	V	
Negative Input Resistor	RNEGA	Pin 4 to Pin 5	8.5	10	11.5	kΩ	
Gate Drive Current	IDR	VGATE = 0.7 V	-25	-50	-	V	
REFERENCE SECTION							
Reference Input Voltage	VREF	Ι _Κ = 10mA	2.44	2.50	2.56	V	
Current Stability	ΔV REF	IK=1mA to 10mA	-	5	20	mV	
Absolute Precision of Internal Three Resistors	Rint	-	-	-	±20	%	
Relative Deviation of Three Resistors	Rrate	-	-	±0.5	±3	%	
Temperature Stability (Note1)	ΔV_{REF}	Ta = 0 to 70 °C	-	13	17	mV	
Gain Bandwidth (Note1)	GBW	GV = 1	-	1	-	MHz	
POWER GOOD SECTION							
Detecting Input Voltage	VIN1	-	1.23	1.28	1.33	V	
Detecting PG Voltage	VDET	-	4.1	4.3	4.5	V	
Hysteresis Voltage 1	HY1	-	10	20	40	mV	
Hysteresis Voltage 2	HY2	-	200	250	-	mV	
Charging Current for PG Delay	ICHG	-	-8	-14	-20	uA	
PG Output Resistor	Rpg	-	7.7	9.0	10.3	kΩ	
PG Output Saturation Voltage	VSAT	ISINK = 6mA	-	0.2	0.4	V	
PG Output Leakage Current	IO(LKG)	-	-	0.01	1	uA	
TOTAL STANDBY CURRENT							
Supply Current	Icc	VCC = 20V , VCC1 = 5V	-	3	5	mΑ	


Note:

^{1.} These parameters, although guaranteed, are not 100% tested in production

Mechanical Dimensions

Package

Dimensions in millimeters

Ordering Information

Product Number	Package	Operating Temperature
KA3501	14-DIP	0°C ~ +70°C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com